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LETTER TO THE EDITOR 

Linear screening by a ~ D E G  in the presence of a low 
magnetic field 

R W Tank and R B Stinchcombe 
Department of Physics, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 23 August 1994 

Abshct.  A study is made of the linear screening response of a WEG in the presence of a 
low perpendicular magnetic field. The response is calculated by solving the linearized equation 
of motion for the density operator. Use is made of a Wigner-hme representation which avoids 
the need to evaluate matrix elements between Landau wavefunctions. We give an explicit 
explession for the response to a static applied potential at zero tempera-. The correction to 
the Zelpmagnetic-field response is significant for fields as low as 0.03 T. These corrections 
could therefore be important for the low-field magnemreSistance of systems such as dot and 
antidot Wces. 

In recent years there has been growing theoretical interest in the screening response of a 
two-dimensional electron gas (DE) to an applied electrostatic field 11-91. Much of the 
motivation for this has been from the study of dot and antidot lattices. These can be created 
in many ways [10-13], but most techniques ultimately involve the creation of a periodic 
electrostatic potential which is felt by the 2 D E  and modulates its density. It is important to 
know the shape of the resulting self-consistent screened potential in which the electrons will 
reside. For instance, many successful theoretical treatments of transport in antidot lattices 
involve considering the classical motion of electrons in model screened potentials [14, 151. 
The shape of the actual potential may then be important as it affects the electron trajectories. 

Up to the present, calculations of the screening response of a 2DEG have concentrated on 
the simple cases of zero [7-91 or strong [2, 1, 16, 17, 3, 5, 61 magnetic field. In this letter 
we shall consider the more difficult case of response in the presence of a low or moderate 
magnetic field. 

We will build upon much work performed to determine the response of a three- 
dimensional electron gas. This has been studied using a variety of one-particle, many- 
body and diagrammatic techniques. Some of the earliest work was by Sondheimer and 
Wilson [18] who considered the partition function of free electrons -in a magnetic field, 
followed by Nozikres and Pines 1191 who introduced a generalized dielectric constant for a 
many-body problem. Soon after this, much work was performed by Stephen [20,21] using 
Green function techniques, and Quinn and Rodriguez [22] who calculated the conductivity in 
a magnetic field. A very important paper by Hohenberg and Kohn [23] introduced the use of 
density functional techniques and studied in detail the Thomas Fermi approximation. Some 
very nice work was also done by Mermin er& [24,25] who used HarUee-Fock and random 
phase approximations. Our calculation is greatly simplified by use of a representation first 
given by Stinchcombe 1261. This removes the need to evaluate matrix elements between 
Landau states which have a pathological low-field limit. 

The development consists of hvo main sections. In the first, the linearized equation 
of motion for the singleparticle density operator will be rewritten using the representation 
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of [26], thus reducing it to a form where a solution can be found. The second section 
then studies the static response. The formulation for this section will closely follow that 
used in 1241. We shall use a single-particle picture which will avoid complications due to 
keeping antisymmetry under exchange of fermions. 

Let p be the single-particle density operator defined by 

i. c 

where f ( 6 )  is the Fermi-Diiac distribution function, and li, U )  are the eigenstates of the 
system with Hamiltonian H. U represents spin variables. The electron density is then 
given by n(r) = E,, (rl~lr).  We will split the single-particle Hamiltonian into two parts, 
H = Ho + HI, where Ho is the Hamiltonian for an electron confined to a 2D plane normal 
to 2 in the presence of a magnetic field B = B2, 

and HI represents the applied perturbative electric field to which the linear response is to be 
found. Writing p = po +U,  where U is the change affected by HI, the equation of motion 
for p becomes 

p =  -i[H,p] 

d. = i [PO, HI] + i [U, Hol. (2) 
Here, only linear terms have been kept on the right hand side. Matrix elements of this 
equation can then be taken using the representation described in [26], which we will now 
briefly describe. 

Given an operator Q, which in the absence of a magnetic field has the property 

(r lQtr=ol~') = f ( r  - T')  

it is possible to show that in the presence of a magnetic field it has the propexty 

where the Peierls factor e'@('*'') depends upon the gauge A but not on the operator Q. The 
function f'(r - r') is gauge independent and this makes it natural to define a transformation 

e'"".'" (TIQs&') = f'(r - r') 

QkK = /,+,&.' (rlQlr/)dk'r,-iK'fe'ei9(r,r'). (3) 

Note that Q ~ K  is not a true matrix representation of the operator Q, and cannot be written in 
the form (klQlk') where the Ik) are some complete set of states. Nevertheless, the resultant 
Qkk, values have the properties of a Wigner representation and are particularly useful here 
because they are gauge independent, and give rise to convenient low-field forms. 

The kk' elements of (2) are 

 irk^ + i WO, ul~k, = i [Po. HII~w. (4) 
The parts of this equation are easily evaluated. For simplicity take the gauge to be 
A = (0, -Bx, 0). Then +(r,  P') = i(eB/Ur)(x + x')(y -~y'). We note that the final 
result will be gauge independent. Consider the two terms in the commutator [Ho, ulkk 
separately. Using (3) the term (Ho, U ) ~ W  reduces to 

(Ho, u)kW = [ dp dr' (p.Iulp')e'k're-iK.r'ei(etr/Zh)(xt~)(Y-Y') 
J 

,'I 
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where the square bracket arises from (-ihV + e A ) Z  applied to exp (ik . T + i@(r, r')). 
Similarly 

dT dT/ (Tl,,l,.r) eik.re-iW.r'ei6a/u)(x+x')(~-~) s (0. H0)W = 

eB 
x' [ (hk: - T(y - y') + fity + -(x - x ' )  

2m eB > ' (  2 

Together, (5) and (6) will give the required commutator. The remaining term, [PO, Hi]kls' 
can be evaluated similarly. We shall take the perturbation HI from the applied field to have 
the form 

(rlH1lr') = Vqe'9."S(r - r'). 

This corresponds to an applied potential 
result for [a, H&e is then 

that contains just one Fourier component. The 

(7) 

Here 6k = fi2k2/2m), and we have ignored the energy due to the interaction of the 
spin with the magnetic field. The function f ( c k )  is the Fermi-Dirac distribution function. 
Equations (5). (6) and (7) can then be inserted into the equation of motion (4). The result 
after changing k + k - q/2 and denoting oir-q/Z.k+q/z by y is 

[Po, HllkW = vq ( f ( 4  - f(%))W + 4 - k'). 

This is our final expression for the equation of motion of the density operator. It is possible 
to generalize it to allow for band effects, as discussed in detail for the Boltzmann equation 
in [26]. The result is that each ek is replaced'by the zero-field Bloch energy form Ek. In 
the next section we will consider the formal solution when there is no time dependence and 
calculate explicitly the response at zero temperature. 

In many cases only the static response will be required and we now turn our attention to 
that. The static response is, for instance, suitable when one wishes to study DC conduction in 
a 2DEG subject to a periodic potential; it would be unsuitable when studying magnetoplasmon 
osciuations. 

In order to simplify the expressions we will define a polar coordinate system in which 
the 0 = 0, q4 = 0 direction is given by the vector q. For the static case, 3 = 0, equation (8) 
then has the formal solution 

where 1: = 3. The corresponding electron density can then be obtained from the following 
integral; 

The factor of two results from summation over spin variables. This integral can be performed 
at T = 0 and an explicit expression for the linear response is thus obtained. 

When T = 0 the Fermi-Dm distribution functions take the simpre form of theta 
functions. Then f ( ~ k - ~ / z )  - f(€k+@) = Sf will he zero when k lies outside of the range 
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k, - 4 / 2  < k < kf + q / 2 .  Within this range it will take the following form. 

Sf = 1  - x < e < x  
S f = 1  ? r - , y < o < x - ! - x  
Sf = 0 otherwise. 

The angle ,y is a function of k and is given by 

k j  - k2 - q2/4 c o s x = I (  kq )I 
In addition 
some manipulation one can obtain the following 

can be replaced by J: +Cl, where C1 is now an integration constant. After 

Here (Y = kqli ,  and Im denotes the imaginary part. From (11) we can replace kdk by 
rtkq d(cos x ) .  In many interesting systems, such as dot and antidot lattices, the wavelength 
of the applied electric field in question is long compared to the Fermi wavelength, that is 
q < ICf. By restricting ourselves to this case we can replace IC in (12) by Iy. This letter is 
concerned with the response of the ZDEG in the presence of a low magnetic field. In order 
for n(q)  to remain tinite as B -+ 0 we require the constant CI to be zero. The integral (12) 
can then be evaluated by parts, and the final result is 

Here JO is a Bessel function. With V, = -e@(q), (13) is the h e a r  response of the 2DEG to 
a long wavelength electrostatic field with potential 0 at zero temperature and low magnetic 
field. Notice that the Bessel function Jo will give rise to an oscillatory response. In the 
limit 11, + 00 and identifying the value of the Bessel function goes to zero and (13) reduces 
to the linear screening for zero field. The JO term thus gives the correction to the zero- 
magnetic-field result. For low magnetic fields the argument of the Bessel function will be 
large. From the asymptotic form of the Bessel function we then obtain the amplitude of the 
correction term decreasing as ,/S. The correction term is therefore proportional 
to the square root of the magnetic field. Consider now the size of the correction. A typical 
experimental system [ 1.11 will have an electron density of 3.0 x IOl5 m-2 and an applied 
potential with wavelength 800 nm For these numbers l /&qkf) = 30.5 nm. The correction 
to the screening response wiU then be as large as 10% for a field as low as 0.03 T. This 
shows that low magnetic fields will have a significant effect on the screening response of 

We summarize our conclusions as follows. In this letter we studied the linear screening 
response of a ZDEG in the presence of a low magnetic field. The response was obtained 
from solving the linearized equation of motion for the density operator. By making use of a 
representation given by [26] the calculation was greatly simplified because at no point were 
we required to evaluate matrix elements between Landau wavefunctions. The evaluation 
and summation over such matrix elements is quite often the most difficult step in other 
treatments [24]. 

the DEC. 
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At T = 0 the correction to the zero-field response was shown to be oscillatory in 
character and had an amplitude that can be quite large. In order to apply these results 
to system such as the dot or antidot lattice the calculation would need to be extended to 
include finite temperature and a non-linear response. In practice this is very difficult. The 
closed form for the integration of Sf was only possible at zero temperature. At a finite 
temperature a series expansion in powers of B can be formulated, but this would be unable 
to pick up a f i  dependence. However it is reasonable to suppose that the low-temperature 
response would be a similar size to the zero-temperature response. In certain cases, such 
as hopping conduction in a dot lattice 191 this would be large enough to play a significant 
part in the low-field magnetoresistance. 
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